Chapter 7. NumPy Arrays: 1D

import numpy as np

me = 9.11le-31 # mass of electron
c = 299792458 # speed of light
u =0.1*c # particle velocity

gamma = 1 / np.sqrt(1-(u/c)**x2) # gamma factor

KE = (gamma-1) * me * Cx*2 # relativistic kinetic energy

Python for Physicists

Create NumPy Array from Python List

Use the np.array function:

A = np.array([10, 20, 30, 40, 501])

Copy NumPy arrays

B = A.copy()

Fetching and Slicing works the same way as Python Lists

A[0] # selects first element (index = 0)
A[l] # selects 2nd element (index = 1)
A[-1] # selects last element

A[l:4] # selects elements 1,2,3

Vectorized Operations

Vectorized functions act on all elements of the array

A = np.array([3, 6, 9, 12]) # define a NumPy array from a list
A2 = A**2 # square each element
print("square of A = " ,A2) # display the result

square of A = [9, 36, 81, 144]

Python loop: each element squared "by hand". SLOWER
for i in range(len(A)):

A[i] = A[i]**2
print("method 2: A"2 = ",A)

Vectorized Operations

Numpy Arrays can be used like variables in an equation if the arrays have the same length
X = np.array([1,2,4,8]) # NumPy array (length 4)
y = np.array([3,0,1,1]) # NumPy array (length 4)

zZ = X*y # element-wise product of x and y

print("x*y = ",2) # result is also length 4

x*y = [3 0 4 8]

Example

40,

501)

angles in degrees
convert the anges

take the sine of

print results

theta deg = np.array([0, 10, 20, 30,
theta rad = np.deg2rad(theta deg)
to radians
y val = np.sin(theta rad)
each angle
for th,y in zip(theta deg,y val):
print(f"sin({th:2.0f}) = {y:6.4£f}")
sin(0) = 0.0000
sin(10) = 0.1736
sin(20) 0.3420
sin(30) = 0.5000
sin(40) = 0.6428
sin(50) = 0.7660

NumPy Statistics

A = np.array([1,9,2,8,3,7,4,6,5])
Attributes do not take parentheses
A.size # number of elements

A.dtype # data type of the array

Methods require parentheses

A.sum() # sum of the elements

A.prod() # product of the elements

A.mean() # mean of the elements

A.std() # standard deviation

A.var() # variance

A.min() # minimum value

A.max() # maximum value

A.cumsum() # cumulative sum (result will have same length as A)
A.cumprod() # cumulative product (result will have same length as A)

Creating NumPy Arrays - Linearly Spaced Arrays

Create a linearly spaced array with N elements equally spaced from start to stop inclusive

np.linspace(start,stop,N)

my array = np.linspace(100,1000,10)
print("my array is",my_array)

my array is [100. 200. 300. 400. 500. 600. 700. 800. 900. 1000.]

Creating NumPy Arrays - Linearly Spaced Arrays

Create a linearly spaced array with N elements equally spaced from start to stop exclusive with

step size = interval
np.arange(start,stop,interval)

my array = np.arange(0,5.5,0.5)
print("my array is",my_array)

my array is [0. 0.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5.]

Creating NumPy Arrays - Constant Values

To create a NumPy array with length N and filled with zeros, use np.zeros(N)

my array = np.zeros(5)
print("my array is",my array)

my array is [0. 0. 0. 0. 0.]

To create a NumPy array with length N and filled with ones, use np.ones(N)

my array = np.ones(b)
print("my array is",my array)

my array is [1l. 1. 1. 1. 1.]

Creating NumPy Arrays - Constant Values

How would you create a NumPy array of 10 elements filled with 4’s?

my array = 4 * np.ones(10)
print("my array is",my array)

my array is [4. 4. 4. 4. 4. 4. 4. 4. 4. 4.]

Random Numbers

A random number is a value generated in such a way that it cannot be predicted in
advance and is chosen according to some probability distribution.

A probability distribution tells us how likely a given outcome arises on average.

Probability distributions can be classified by their shape and whether they are discrete or
continuous.

likelihood

discrete continuous continuous

flat flat normal (bell curve)

Generating Random Numbers in NumPy

The NumPy library has its own functions to generate arrays of random numbers.
* In order to use these random number generators, an "instance" of the random number
generator object must first be created. To do this we use the command:

rng = np.random.default rng()

* Once the 'rng’ object is created, we can use it to produce a variety of random numbers
drawn from different distributions.
* Here are just a few of the many functions available:

random integers drawn from flat distribution
random elements of a list drawn from flat distribution
random floats drawn from a flat distribution
random floats drawn from normal distribution

rng.integers()
rng.choice()
rng.uniform()
rng.normal ()

HH o H

Random Integers drawn from a Flat Probability Distribution

Example: 6-sided die NI

|

¢ Assuming the die is “fair”, each side will a e 0
1/6 chance of being rolled, i.e. P, = 1/6. (Y '
* Probability distributions that are flat have
equal chances for every outcome. probability
* For discrete distributions, the sum of the 1/6 flat
probabilities of all outcomes must be unity | ‘ ‘ | | ‘
2P =1 12 3 4 5 6

Random Integers drawn from a Flat Probability Distribution

The command for generating N random integers y;, drawn

- -
{o. % from a flat probability distribution on n;,,, <y < ny;,, is:
e
” z = rng.integers(n_low, n high, size=N, endpoint=True)
probability
1/6 flat _
| | | | | Example function call to produce 10 random rolls of a
6-sided die:
1 2 3 4 5 6
\\ /f y = rng.integers(l, 6, size=10, endpoint=True)
print(“dice rolls = “,y)
n_low n_high
dice rolls = [4, 5, 1, 1, 3, 4, 6, 3, 1, 3]

Random Integers drawn from a Flat Probability Distribution

The endpoint=True option tells Python to include n_high in the generated
random integers. Without this option, n_high is by default an exclusive upper limit,
meaning that it is not included

Examples:
Generates 10 random numbers from 1 to 6 inclusive

y = rng.integers(l, 6, size=10, endpoint=True)

Generates 10 random numbers from 1 to 6 exclusive (does not include 6)
y = rng.integers(l, 6, size=10)

rng.choice() gives more flexibility over rng.integers()

rng.integers() is best if you want to sample a flat distribution of integers.

rng.choice() is best if you need more flexibility, including:
* drawing from a list of items or non-concurrent integers, i.e. [“cat”, “dog”, “mouse”]
or [1, 3, 5]
* drawing from a non-flat distribution. rng.choice() allows you to weight each outcome

* ensuring that the random items do not repeat (i.e. no duplicates)

rng.choice() gives more flexibility over rng.integers()

Examples:

pick a random element from a list
rng.choice([*“dog”, *“cat”, *“mouse”])

pick a 2 random elements from a list (may get same result twice)
rng.choice([*“dog”, *“cat”, “mouse”], size=2)

pick a 2 unique random elements from a list (no repeats)
rng.choice([“dog”, *“cat”, “mouse”], size=2, replace=False)

pick a 2 random elements with sampling weights given by p
rng.choice([*“dog”, *“cat”, *“mouse”], size=2, p=[0.7, 0.2, 0.1])

pick a 2 unique random numbers from the the range 0-4 (does not include 5)
rng.choice(5, size=2, replace=False)

Random Floats drawn from a Flat Probability Distribution

The command for generating a random float y; drawn from a
Example: ball with constant

flat probability distributiononn, . <y <mn,. ,is (hote: n_high
speed bouncing between 2 walls P Y low =Y high _nig

is not included):

Q—V z = rng.uniform(n _low, n_high, size=N)
probability Example function call to produce 4 random values
flat between O and 1:

y = rng.uniform(0, 1, size=4)
1 print(“random positions = “,y)

N,

n_low n_high

random positions = [0.4586, 0.1994, 0.9443, 0.6753]

Random Floats drawn from a Normal Distribution

The command for generating N random floats y, drawn from
a Normal probability distribution (i.e. a Bell curve) with mean

Normal Distribution = 0 and standard deviation =1 is:

z = rng.normal (size=N)
probability

std =1

Example function call to produce 4 random values:

mean = 0
y = rng.normal(size=4)
print (“random positions = “,y)

random positions = [-0.342, 0.1554, 1.454, -0.4567]

